
16.1 Hooke’s Law: Stress and Strain Revisited

Figure 16.2 When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the restoring force

opposing displacement. When the ruler is on the left, there is a force to the right, and vice versa.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move
in a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in
Figure 16.2. The deformation of the ruler creates a force in the opposite direction, known as a restoring force. Once released, the
restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero. However,
by the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite deformation. It
is then forced to the left, back through equilibrium, and the process is repeated until dissipative forces dampen the motion.
These forces remove mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and strain were
covered in Newton’s Third Law of Motion, the name was given to this relationship between force and displacement was Hooke’s
law:

Here, is the restoring force, is the displacement from equilibrium or deformation, and is a constant related to the
difficulty in deforming the system. The minus sign indicates the restoring force is in the direction opposite to the displacement.

Figure 16.3 (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net force

is zero at the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite

direction. It stops the ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the absence of

damping (caused by frictional forces), the ruler reaches its original position. From there, the motion will repeat itself.

The force constant is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the restoring
force, and the stiffer the system. The units of are newtons per meter (N/m). For example, is directly related to Young’s
modulus when we stretch a string. Figure 16.4 shows a graph of the absolute value of the restoring force versus the displacement
for a system that can be described by Hooke’s law—a simple spring in this case. The slope of the graph equals the force constant

in newtons per meter. A common physics laboratory exercise is to measure restoring forces created by springs, determine if
they follow Hooke’s law, and calculate their force constants if they do.
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Figure 16.4 (a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a straight line

means that the system obeys Hooke’s law. The slope of the graph is the force constant . (b) The data in the graph were generated by

measuring the displacement of a spring from equilibrium while supporting various weights. The restoring force equals the weight

supported, if the mass is stationary.

EXAMPLE 16.1

How Stiff Are Car Springs?

Figure 16.5 The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its suspension

system. (credit: exfordy on Flickr)
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What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?

Strategy

Consider the car to be in its equilibrium position before the person gets in. The car then settles down 1.20 cm, which
means it is displaced to a position . At that point, the springs supply a restoring force equal to the
person’s weight . We take this force to be in Hooke’s law. Knowing and , we
can then solve the force constant .

Solution

1. Solve Hooke’s law, , for :

Substitute known values and solve :

Discussion

Note that and have opposite signs because they are in opposite directions—the restoring force is up, and the displacement is
down. Also, note that the car would oscillate up and down when the person got in if it were not for damping (due to frictional
forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock absorbers.

Energy in Hooke’s Law of Deformation
In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether you pluck a
guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal, sound, or kinetic
energy, then all the work is initially stored in the deformed object as some form of potential energy. The potential energy stored
in a spring is . Here, we generalize the idea to elastic potential energy for a deformation of any system that can be
described by Hooke’s law. Hence,

where is the elastic potential energy stored in any deformed system that obeys Hooke’s law and has a displacement from
equilibrium and a force constant .

It is possible to find the work done in deforming a system in order to find the energy stored. This work is performed by an
applied force . The applied force is exactly opposite to the restoring force (action-reaction), and so . Figure 16.6
shows a graph of the applied force versus deformation for a system that can be described by Hooke’s law. Work done on the
system is force multiplied by distance, which equals the area under the curve or (Method A in the figure). Another way
to determine the work is to note that the force increases linearly from 0 to , so that the average force is , the distance
moved is , and thus (Method B in the figure).
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Figure 16.6 A graph of applied force versus distance for the deformation of a system that can be described by Hooke’s law is displayed. The

work done on the system equals the area under the graph or the area of the triangle, which is half its base multiplied by its height, or

.

EXAMPLE 16.2

Calculating Stored Energy: A Tranquilizer Gun Spring
We can use a toy gun’s spring mechanism to ask and answer two simple questions: (a) How much energy is stored in the spring
of a tranquilizer gun that has a force constant of 50.0 N/m and is compressed 0.150 m? (b) If you neglect friction and the mass of
the spring, at what speed will a 2.00-g projectile be ejected from the gun?

Figure 16.7 (a) In this image of the gun, the spring is uncompressed before being cocked. (b) The spring has been compressed a distance ,

and the projectile is in place. (c) When released, the spring converts elastic potential energy into kinetic energy.

Strategy for a

(a): The energy stored in the spring can be found directly from elastic potential energy equation, because and are given.

Solution for a

Entering the given values for and yields
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Strategy for b

Because there is no friction, the potential energy is converted entirely into kinetic energy. The expression for kinetic energy can
be solved for the projectile’s speed.

Solution for b

1. Identify known quantities:

2. Solve for :

3. Convert units:

Discussion

(a) and (b): This projectile speed is impressive for a tranquilizer gun (more than 80 km/h). The numbers in this problem seem
reasonable. The force needed to compress the spring is small enough for an adult to manage, and the energy imparted to the
dart is small enough to limit the damage it might do. Yet, the speed of the dart is great enough for it to travel an acceptable
distance.

CHECK YOUR UNDERSTANDING
Envision holding the end of a ruler with one hand and deforming it with the other. When you let go, you can see the oscillations
of the ruler. In what way could you modify this simple experiment to increase the rigidity of the system?

Solution
You could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.

CHECK YOUR UNDERSTANDING
If you apply a deforming force on an object and let it come to equilibrium, what happened to the work you did on the system?

Solution
It was stored in the object as potential energy.

16.2 Period and Frequency in Oscillations

Figure 16.8 The strings on this guitar vibrate at regular time intervals. (credit: JAR)

When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the
string takes the same time as the previous one. We define periodic motion to be a motion that repeats itself at regular time
intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one
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